A Poisson Equation for Vibrational Potentials of Diatomic Molecules* **

ALFRED B. ANDERSON*** and ROBERT G. PARR

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA

Received December 3, 1971

A Poisson equation for nuclear motions in diatomic molecules is derived. The working formula is

$$\nabla_{\alpha}^{2}W = 4\pi \mathscr{Z}_{\alpha}\varrho_{\beta}(\alpha),$$

where V_{α}^2 is the Laplacian operator for the position of nucleus α , W is the Born-Oppenheimer molecular energy, \mathscr{Z}_{α} is the atomic number of α , and $\varrho_{\beta}(\alpha)$ is the electronic charge density evaluated at α due to orbitals centered on β . Harmonic, anharmonic and quartic equilibrium force constants are calculated using Hartree-Fock molecular and atomic electronic charge densities, for a number of first and second row diatomic molecules. A charge-model field gradient formula for harmonic force constants

$$k_e = 3/R_e^3$$
,

where k_e is the force constant and R_e the equilibrium internuclear distance, which offers general improvement over a similar formula due to Bratoź, is presented.

Eine Poisson-Gleichung für die Kernbewegung in zweiatomigen Molekülen wird abgeleitet. Es wird die Formel

$$\nabla_{\alpha}^2 W = 4\pi \mathscr{Z}_{\alpha} \varrho_{\beta}(\alpha)$$

diskutiert, wobei V_{α}^2 der Laplaceoperator für die Ortskoordinaten des Kerns α , W die molekulare Born-Oppenheimer-Energie, \mathscr{Z}_{α} die Kernladungszahl von α und $\varrho_{\beta}(\alpha)$ die elektronische Ladungsdichte bei α ist, die durch Orbitale erzeugt wird, die bei β zentriert sind.

Harmonische, inharmonische und biquadratische Gleichgewichtskonstanten werden mit Hilfe von molekularen und atomaren Hartree-Fock-Elektronendichten für eine Anzahl von zweiatomigen Molekülen mit Elementen der beiden ersten Reihen des Periodensystems berechnet. Eine Feldgradientenformel für ein Ladungsmodell bei harmonischen Kraftkonstanten

$$k_e = 3/R_e^3$$

wird angegeben, wobei k_e die Kraftkonstante und R_e der Atomabstand im Gleichgewicht ist. Diese Formel stellt eine Verbesserung gegenüber einer ähnlichen Formel von Bratoź dar.

1. Introduction

In this paper, electrostatic methods will be presented for obtaining equilibrium force constants for diatomic molecules. Accuracy of the formulas appears to be competative with *ab initio* methods [1-4], curve fitting methods [5] and modeling methods [1-4, 6-8]. First we present some analytical formulas, followed by a

^{*} Aided by research grants to the Johns Hopkins University from the National Institutes of Health and the National Science Foundation.

^{**} This work is based on part of a thesis submitted by Alfred B. Anderson in partial fulfillment of the requirements for the degree Doctor of Philosophy, The Johns Hopkins University, 1970.

^{***} Present address: Chemistry Department, Indiana University, Bloomington, Indiana 47401, USA.

discussion of approximations leading to a field gradient model for harmonic force constants [9] which offers improvement over a formula due to Bratoź [7]. Then we obtain a Poisson equation for vibrational potentials [10] which is a theoretical generalization of a formula due to Platt [6] that yields harmonic and higher order force constants in terms of electron densities at the nucleus.

2. Relationships between Vibrational Force Constants and Quadrupole Coupling Constants [9]

The Born-Oppenheimer energy W of a polyatomic molecule or solid in general is a function of the Cartesian coordinates of the nuclei referred to as arbitrary origin. If one of the coordinates X_{α} , Y_{α} , Z_{α} of the particular nucleus α of charge \mathscr{Z}_{α} is changed, the change in W is given by a Hellmann-Feynman formula of the type

$$\frac{\partial W}{\partial X_{\alpha}} = \mathscr{Z}_{\alpha} \bigg[\sum_{\beta \neq \alpha} \mathscr{Z}_{\beta} \bigg(\frac{X_{\beta} - X_{\alpha}}{R_{\alpha\beta}^3} \bigg) - \int \varrho(x - X_{\alpha}) \frac{d\tau}{r_{\alpha}^3} \bigg], \tag{1}$$

where ρ is the electronic charge density function, r_{α} is the distance from $d\tau$ to nucleus α and x, y, z are Cartesian coordinates of $d\tau$ relative to a given origin. Differentiation of Eq. (1) with respect to X_{α} gives a formula for the second derivative $k_{X_{\alpha}X_{\alpha}} = \partial^2 W/\partial X_{\alpha}^2$, and similarly we can obtain formulas for $k_{Y_{\alpha}Y_{\alpha}}, k_{Z_{\alpha}Z_{\alpha}}$, $k_{X_{\alpha}Y_{\alpha}} = \partial^2 W/\partial X_{\alpha} \partial Y_{\alpha}, k_{X_{\alpha}Z_{\alpha}}$ and $k_{Y_{\alpha}Z_{\alpha}}$. If we identify the corresponding six components of the electric field gradient tensor for the molecular charge distribution with nucleus α as origin,

$$q_{X_{\alpha}X_{\alpha}} = \sum_{\beta \neq \alpha} \mathscr{Z}_{\beta} \left(\frac{3(X_{\beta} - X_{\alpha})^2}{R_{\alpha\beta}^2} - 1 \right) (R_{\alpha\beta}^3)^{-1} - \int \varrho \left(\frac{3(x - X_{\alpha})^2}{r_{\alpha}^2} - 1 \right) \frac{d\tau}{r_{\alpha}^3}, \text{ etc.}, \quad (2)$$

$$q_{X_{\alpha}Y_{\alpha}} = 3 \sum_{\beta \neq \alpha} \mathscr{Z}_{\beta} \left(\frac{(X_{\beta} - X_{\alpha})(Y_{\beta} - Y_{\alpha})}{R_{\alpha\beta}^{5}} \right) - 3 \int \varrho \left(\frac{(x - X_{\alpha})(y - Y_{\alpha})}{r_{\alpha}^{5}} \right) d\tau \text{ etc.}, \qquad (3)$$

then these formulas are

$$k_{X_{\alpha}X_{\alpha}} = \mathscr{Z}_{\alpha} \left[q_{X_{\alpha}X_{\alpha}} + \frac{4}{3} \pi \varrho(\alpha) - \int (x - X_{\alpha}) \frac{\partial \varrho}{\partial X_{\alpha}} \frac{d\tau}{r_{\alpha}^{3}} \right], \text{ etc.}, \qquad (4)$$

$$k_{X_{\alpha}Y_{\alpha}} = \mathscr{Z}_{\alpha} \left[q_{X_{\alpha}Y_{\alpha}} - \int (x - X_{\alpha}) \frac{\partial \varrho}{\partial Y_{\alpha}} \frac{d\tau}{r_{\alpha}^{3}} \right], \text{ etc.}$$
(5)

Here the quantity $\varrho(\alpha)$ is the electronic charge density at nucleus α ; it enters $k_{X_{\alpha}X_{\alpha}}$, $k_{Y_{\alpha}Y_{\alpha}}$, and $k_{Z_{\alpha}Z_{\alpha}}$ because $V^2(1/r_{\alpha}) = -4\pi\delta(r_{\alpha})$.

The first of Eqs. (4) is the equation discovered and applied by Salem for diatomic molecules [1]. If we add the three Eqs. (4), we obtain a formula for the Laplacian of the energy [9],

$$V_{\alpha}^{2}W = \mathscr{Z}_{\alpha}[4\pi\varrho(\alpha) - \int \nabla_{\alpha}\varrho \cdot \nabla_{\alpha}(\boldsymbol{r} - \boldsymbol{R}_{\alpha})^{-1} \,\mathrm{d}\tau].$$
(6)

According to Salem, in Eq. (4) $\mathscr{Z}_{\alpha} \frac{4}{3} \pi \varrho(\alpha)$ is generally much larger than $k_{\chi_{\alpha} \chi_{\alpha}}$ and $\mathscr{Z}_{\alpha} q_{\chi_{\alpha} \chi_{\alpha}}$, and similarly $\mathscr{Z}_{\alpha} 4 \pi \varrho(\alpha)$ is greater than $V_{\alpha}^2 W$ in Eq. (6). However, $\varrho(\alpha)$ can be eliminated from Eqs. (4) by subtraction, giving [9]

$$k_{Z_{\alpha}Z_{\alpha}} - \frac{1}{2} (k_{X_{\alpha}X_{\alpha}} + k_{Y_{\alpha}Y_{\alpha}})$$

$$= \mathscr{L}_{\alpha} \left[\frac{3}{2} q_{Z_{\alpha}Z_{\alpha}} - \frac{1}{2} \int \left(2(z - Z_{\alpha}) \frac{\partial \varrho}{\partial Z_{\alpha}} - (x - X_{\alpha}) \frac{\partial \varrho}{\partial X_{\alpha}} - (y - Y_{\alpha}) \frac{\partial \varrho}{\partial Y_{\alpha}} \right) \frac{d\tau}{r_{\alpha}^{3}} \right],$$

$$k_{X_{\alpha}X_{\alpha}} - k_{Y_{\alpha}Y_{\alpha}} = \mathscr{L}_{\alpha} \left[(q_{X_{\alpha}X_{\alpha}} - q_{Y_{\alpha}Y_{\alpha}}) - \int \left((x - X_{\alpha}) \frac{\partial \varrho}{\partial X_{\alpha}} - (y - Y_{\alpha}) \frac{\partial \varrho}{\partial Y_{\alpha}} \right) \frac{d\tau}{r_{\alpha}^{3}} \right].$$
(8)

Molecule	2/Re ^{3 a}	3/Re ^{3 b}	$k_e(\text{exptl.})$
HF	5,98	8.97	(9.66)
HCl	2.23	3.34	(5.16)
HBr	1:63	2.45	(4.16)
HI	1.12	1.68	(3.14)
LiH	1.14	1.71	(1.03)
NaH	0.69	1.03	(0.78)
KH	0.41	0.61	(0.56)
RbH	0.35	0.52	(0.51)
CsH	0.30	0.45	(0.47)
BeH	1.14	1.70	(1.03)
BH	2.46	3.70	(3.04)
CH	3.28	4.92	(4.51)
ОН	5.05	7.57	(7.79)
MgH	0.89	1.34	(1.28)
AIH	1.03	1.54	(1.62)
SiH	1.31	1.97	(2.96)
СаН	0.57	0.86	(0.98)
MnH	0.89	1.33	(1.30)
ZnH	1.14	1,71	(1.57)
GeH	1.15	1.72	(2.38)
NiH	1.44	2.16	(2.17)
CuH	1.47	2.21	(2.20)
SrH	0.47	0.70	(0.85)
InH	0.74	1.12	(1.28)
CdH	0.84	1.27	(1.20)
AgH	1.09	1.64	(1.82)
BaH	0.42	0.62	(0.81)
TIH	0.71	1.06	(1.14)
BiH	0.78	1.17	(1.71)
HgH	0.88	1.31	(1.14)
AuH	1.30	1.96	(3.14)

Table 1. Predictions of equilibrium harmonic force constants, k_e , for some M^-H^+ and M^+H^- diatomic molecules; 10^5 cgs units

^a This relation is discussed in Refs. [1] and [7] of text.

^b Eq. (10) of text.

^e Experimental values from D. R. Herschbach and V. W. Laurie, University of California, Radiation Laboratory Report UCRL 9694 (Berkeley, Calif., 1961). A. B. Anderson and R. G. Parr:

These formulas and Eqs. (3) are completely general relations among force constants and quadrupole coupling constants eqQ_0 .

For a diatomic molecule at equilibrium, there is one non-zero force constant $k_e = [k_{Z_{\alpha}Z_{\alpha}}]_e = [k_{Z_{\beta}Z_{\beta}}]_e$ and one independent component of the field gradient tensor at $\alpha, q_{\alpha} = [q_{Z_{\alpha}Z_{\alpha}}]_e$, and at $\beta, q_{\beta} = [q_{Z_{\beta}Z_{\beta}}]_e$. Eq. (8) is trivial. Eq. (7) becomes [9]

$$k_{e} = \mathscr{Z}_{\alpha} \left[\frac{3}{2} q_{\alpha} - \frac{1}{2} \int \left(2(z - Z_{\alpha}) \frac{\partial \varrho}{\partial Z_{\alpha}} - (x - X_{\alpha}) \frac{\partial \varrho}{\partial X_{\alpha}} - (y - Y_{\alpha}) \frac{\partial \varrho}{\partial Y_{\alpha}} \right) \frac{d\tau}{r_{\alpha}^{3}} \right]_{e}, \tag{9}$$

and similarly for β . This is an exact relation between k_e and q_a . When the second term is negligible, which it often appears to be for the hydrogen atom, we have $k_e \approx \mathscr{Z}_{\alpha}(\frac{3}{2}q_{\alpha})$; $k_e \approx \frac{3}{2}q_{\rm H}$. This relation was derived by Salem for ionic compounds M^+H^- his relation was $k_e \approx q_{\rm H}$ [1]. The former appears preferable in both cases. For the M^+H^- cases Salem used the Brato2 relation $k_e = 2/R_e^3$ (a.u.) derived for a point charge ionic model [7]. Similar reasoning applied to Eq. (9) leads to the formula

$$k_e = 3/R_e^3.$$
 (10)

As may be seen in Table 1, predictions of k_e using Eq. (10) are quite accurate, definitely better than those from Brato² formula.

3. Harmonic Force Constants from Electron Densities

Eq. (6) is not a particularly useful form for the divergence of the Hellmann-Feynman force on nucleus, because the two terms on the right are difficult to determine accurately and they approximately cancel. However, it greatly simplifies when ρ is appropriately elucidated, giving a formula which allows approximate determination of vibrational force constants from electron densities alone, with no integrations.

The electronic charge density may be resolved into parts ϱ_{α} , ϱ_{β} perfectly following nuclei α and β (we let β represent all nuclei other than α), and the rest, a nonperfectly following part ϱ_{NPF} :

$$\varrho(\mathbf{r}, \mathbf{R}_{\alpha}, \mathbf{R}_{\beta}) = \varrho_{\alpha}(\mathbf{r} - \mathbf{R}_{\alpha}) + \varrho_{\beta}(\mathbf{r} - \mathbf{R}_{\beta}) + \varrho_{\text{NPF}}(\mathbf{r}, \mathbf{R}_{\alpha}, \mathbf{R}_{\beta}).$$
(11)

Putting this into Eq. (6) and using the easily derived relation

$$\mathscr{Z}_{\alpha} \int \nabla_{\alpha} \varrho(\mathbf{r} - \mathbf{R}_{\alpha}) \cdot \nabla_{\alpha} |\mathbf{r} - \mathbf{R}_{\alpha}|^{-1} \,\mathrm{d}\tau = \mathscr{Z}_{\alpha} 4\pi \varrho(\alpha) \tag{12}$$

leads to the formula

$$V_{\alpha}^{2}W = 4\pi \mathscr{Z}_{\alpha}[\varrho(\alpha) - \varrho_{\alpha}(\alpha)] - \mathscr{Z}_{\alpha}\int V_{\alpha}\varrho_{\mathrm{NPF}}(\mathbf{r}, \mathbf{R}_{\alpha}, \mathbf{R}_{\beta}) \cdot V_{\alpha}|\mathbf{r} - \mathbf{R}_{\alpha}|^{-1}\,\mathrm{d}\tau\,.$$
(13)

The consequence is that in Eq. (6) the density following nucleus α may be ignored and the density following nucleus β contributes nothing to the integral. Eq. (13) is exact.

The contribution of $\rho_{NPF}(\alpha)$ to the first term in Eq. (13) may be expected to be small, and the integral should be small as well. Making these assumptions, we obtain our final working formula, now approximate,

$$V_{\alpha}^2 W = 4\pi \mathscr{Z}_{\alpha} \varrho_{\beta}(\alpha) \,. \tag{14}$$

This is of the form of a classical electrostatic Poisson equation.

304

We may deduce Eq. (14) from Eq. (13) more formally as in these two examples: *Case 1.* Suppose ρ_{NPF} itself perfectly followed some point $KR_{\alpha} + (1-K)R_{\beta}$ (for example the midpoint $\frac{1}{2}R_{\alpha} + \frac{1}{2}R_{\beta}$): $\rho_{\text{NPF}} = \rho_{\text{NPF}}(\mathbf{r} - KR_{\alpha} - (1-K)R_{\beta})$. Then one would have $\int V_{\alpha}\rho_{\text{NPF}} \cdot V_{\alpha}|\mathbf{r} - \mathbf{R}_{\alpha}|^{-1} d\tau = 4\pi K \rho_{\text{NPF}}(\alpha)$, and Eq. (14) follows if we make the reasonable assumption $\rho_{\text{NPF}}(\alpha) = 0$.

Case 2. Suppose the molecular density may be represented as the sum of atomic densities. Then Eq. (14) follows exactly, making it an "atoms in molecules" result, within the Hellmann-Feynman approximation.

Molecu	le	$k_e \times 10$)5		$l_e \times 10^3$	13		$m_e \times 10$	21	
		$\overline{Z_L}$	Z_H	Exptl.	Z_L	Z _H	Exptl.	Z_L	Z_H	Exptl.
HeH+	$\gamma^1 \Sigma^+$	2.34	0.46		22.4	43.3		189	354	
LiH	$\chi^{1}\Sigma^{+}$	0.002	0.88	(1.026)	0.009	3.81	(3.63)	0.06	14.7	(11.5)
	~	0.468	0.450	· · ·	1.14	2.26	. ,	2.32	9.79	
BeH	$\chi^2 \Sigma^+$	2.96	1.52	(2.26)	10.6	7.92	(10.0)	32.1	36.6	(38.4)
	<i>x</i> .	1.72	1.56	· · ·	6.43	8.19	· · /	20.2	37.8	. ,
BeH	А²П.	0.05	1.31	(2.33)	0.2	6.92	(10.7)	0.6	32.5	
BeH ⁺	$\gamma^1 \Sigma^+$	0.05	0.96	(2.64)	0.2	5.53	(11.6)	0.7	27.8	(40.7)
BH	$\tilde{\chi}^{1}\Sigma^{+}$	5.10	2.30	(3.04)	23.7	12.7	(15.8)	96.5	62.6	(70.3)
	~	2.89	2.95	· · ·	13.8	16.0	. ,	56.7	75.8	
BH^+	$\chi^2 \Sigma^+$	3.38	1.03		18.2	6.56		82.6	36.9	
BH^+	$A^2 \Pi_r$	0.233	0.593		1.31	3.79		6.08	21.4	
CH	$\gamma^2 \Pi$	6.20	2.97	(4.51)	34.8	18.1	(26.7)	171	98.2	(136)
		4.36	5.42		24.9	30.1	. ,	124	148	
CH^+	$\chi^1 \Sigma^+$	5.45	1.47	(4.11)	34.0	9.84	(23.0)	183	58.5	
CH^{-}	$\chi^3 \Sigma^-$	7.03	4.48		36.4	26.1	. ,	169	136	
NH	$\chi^3 \Sigma^-$	7.03	3.65	(6.03)	45.3	24.1	(39.6)	259	141	
		5.72	8.62		37.6	49.2		217	250	
NH	a¹∆	6.79	3.43	(5.62)	43.9	22.6	(21.6)	251	132	
$\rm NH^+$	$\chi^2 \Pi_r$	4.94	1.37	. ,	34.5	9.70		211	61.0	
$\rm NH^-$	$\chi^2 \Pi_i$	8.16	5.59		49.9	35.3		273	198	
OH	$\chi^2 \Pi_r$	7.57	3.88	(7.79)	55.1	27.6	(54.3)	355	174	(337)
		7.15	12.7		52.0	74.2		335	388	
OH	$A^2\Sigma^+$	3.52	1.72	(5.65)	26.2	12.4	(40.5)	172	79.3	
OH^+	$\chi^3 \Sigma^-$	4.85	1.34	(4.88)	37.3	10.0	(32.4)	252	66.9	(202)
OH^+	$a^1 \Lambda$	4.81	1.28		37.1	9.66		252	64.7	
OH-	$\chi^{1}\Sigma^{+}$	9.09	7.50		63.5	48.3		399	248	
HF	$\chi^1 \Sigma^+$	7.88	3.96	(9.66)	63.4	30.0	(69.9)	453	202	(446)
		8.43	17.5		67.0	104		475	561	
HF^+	$\chi^2 \Pi_i$	6.93	1.78		59.9	14.8		454	109	
HF^+	$A^2\Sigma^+$	4.07	0.83	(5.00)	36.1	7.23	(34.2)	280	55.9	(133)
NeH ⁺	$\chi^{1}\Sigma^{+}$	3.60	0.75		32.4	6.42		257	48.2	

Table 2. Force constants from electron densities: first row hydrides^a

^a When possible, two sets of calculations are given. Bader's molecular densities are used first according to the method of Eqs. (15)-(17). Following unlabeled rows employ Clementi atomic densities according to Eqs. (15)-(17). Exceptional cases, labeled a, employ Clementi atomic densities only. Experimental values are in parentheses. See footnote c, Table 1; cgs units.

Columns labeled Z_L employ the charge of the light nucleus; those labeled Z_H employ the heavy nucleus.

Where blanks exist in the molecular density results, insufficient numerical density data was available for a five-point polynomial fit. In these cases the density was exceedingly small and could be expected to yield poor results.

21 Theoret. chim. Acta (Berl.) Vol. 26

Eq. (14) says that the Laplacian of the molecular potential energy, $V_{\alpha}^2 W$, is the sum of the orbital densities from the other atoms β . At equilibrium for a diatomic molecule, Eq. (14) yields the harmonic force constant:

$$k_e = \left[\nabla_{\alpha}^2 W \right]_e = 4\pi \mathscr{Z}_{\alpha} \varrho_{\beta}(\alpha) \,. \tag{15}$$

From similar arguments Platt derived the formula for hydrides: $k_e = 4\pi \rho_{UA}(H)$, where ρ_{UA} is the united atom density [6]. Predictions of the k_e using Eq. (15) for first row diatomic molecules are in Tables 2–5. Clementi atomic densities [11] and Hartree-Fock quality molecular densities are used according to the method of *Case 2*. In order to use molecular densities, we suppose ρ_{α} and ρ_{β} to be symmetric about α and β and take $\rho_{\beta}(\alpha)$ to be the total density at a distance R_e from β in the opposite directions from α , and similarly for $\rho_{\alpha}(\beta)$, as calculated from Hartree-Fock wave functions [12, 13]. The force term $[2/R \partial W/\partial R]_e$ is set equal to zero. Heavy atom densities yields accurate predictions of k_e ; light atom densities give correct trends, but less accurate predictions, possibly because heavy atom

Molecule		$k_e \times 10$	$k_e \times 10^5$			$-l_{e} \times 10^{13}$			$m_{e} \times 10^{21}$		
		ZL	Z _H	Exptl.	$\overline{Z_L}$	Z _H	Exptl.	Z_L	Z_{H}	Exptl.	
NaH	$\gamma^1 \Sigma^+$	0.321	0.547	(0.782)	0.744	2.65	(2.61)	1.44	11.1	(7.45)	
MgH	$\chi^2 \Sigma^+$	1.39		(1.28)	3.88		(4.92)	8.71		(13.3)	
0	<i>n</i>	0.862	1.079		2.67	5.32	· · ·	6.73	22.9	. ,	
MgH	$A^2 \Pi_{-}$	0.07		(1.48)	0.31		(6.15)	1.14			
MgH ⁺	$\gamma^{L}\Sigma^{+}$	0.09		(1.64)	0.37		(7.20)	1.44		(30.0)	
AIĤ	$\tilde{\chi}^{1}\Sigma$	2.15		(1.62)	7.55		(6.72)	22.0		(24.6)	
	~	1.35	0.082		4.82	0.51	. ,	14.7	2.85	i i	
AlH^+	$\gamma^2 \Sigma^+$	1.49		(1.48)	6.09		(9.27)	20.4			
AlH ⁺	$\tilde{A}^{2}\Pi$.	0.16		(1.76)	0.73		(9.90)	2.86			
SiH	$\gamma^2 \Pi$	2.56	2.49	(2.96)	10.8	12.6	(13.4)	38.3	56.0	(52.6)	
	~ /	2.18	2.79	· ·	8.99	14.2		31.5	63.2		
SiH+	$\chi^{1}\Sigma^{+}$	2.37	1.58		10.9	8.37		42.1	39.3		
SiH-	$\tilde{\chi}^3 \Sigma^-$	2.75			10.9			36.4			
PH	$\chi^3 \Sigma^-$	2.78	2.56	(3.26) ^b	13.5	14.0		58.6	67.3		
	<i>,</i> ,	2.96	4.15		13.9	21.5		55.6	97.2		
PH	$a^1 \Delta$	2.77	2.52		13.5	13.8		56.2	66.5		
PH^+	χ ² Π.	2.63	1.61	(3.04)	13.7	9.23	(14.6)	61.4	46.6		
PH^{-}	$\chi^2 \Pi_i$	3.15	3.60	. ,	14.6	19.4		57.8	90.6		
SH	$\chi^2 \Pi$	3.10	2.45	(4.19) ^b	16.8	14.5		78.7	75.5		
		3.83	6.06		19.9	31.9		89.2	147		
SH	$A^2\Sigma^+$	1.67	1.30		9.58	8.13		47.1	44.6		
SH^+	$\chi^3 \Sigma^-$	2.86	1.46		16,4	9.01		81.1	49.1		
SH ⁺	$a^1 \Delta$	2.85	1.42		16.4	8.82		81.2	48.2		
SH^-	$\chi^1 \Sigma^+$	3.20	3.77		16.4	21.1		73.5	103		
HC1	$\chi^1 \Sigma^+$	3.44	2.41	(5.16)	20.6	15.4	(28.4)	107	86.1	(167)	
		4.83	8.56	·	27.4	45.8		136	215		
HCl ⁺	$\chi^2 \Pi_i$	2.63	1.16,	(4.13)	16.4	7.54	(23.0)	90.0	43.1	(92.2)	
HCl ⁺	$A^2\Sigma^+$	0.534	0.271	(1.49)	3.32	1.73	(7.74)	18.4	9.65	5	

Table 3. Force constants from electron densities: second row hydrides^a

^a Footnote a, Table 2.

^b Experimental values from Varshni, Y. P.: J. chem. Physics 28, 108 (1958).

densities are less perturbed in molecules. Five-point polynomial fits of density values spaced 0.1 a.u. apart for the atomic densities and 0.1 Å apart for the molecular densities were employed. (This allows us to evaluate derivatives of the densities later on.)

Molecule		$k_e imes 10^5$		$-l_e \times 10$	013	$m_e \times 10^{21}$		
H ₂	$^{1}\Sigma_{g}^{+}$	2.64	(5.69) ^b	19.0	(36.7)	125	(233)	
		3.79		23.2		148		
Li ₂ ª	$\chi^1 \Sigma_g^+$	0.397	(0.255)	1.01	(0.546)	2.05	(0.857)	
B ₂	${}^{3}\Sigma_{a}^{-1}$	4.31	(3.58)	19.3	(18.1)	72.2	(63.7)	
	0	4.61		20.8		81.6		
B ₂	$^{1}\Delta_{a}$	4.27		19.1		75.7		
\mathbf{B}_2	${}^{1}\Sigma_{a}^{+}$	4.22		18.9		79.9		
\tilde{B}_2^+	${}^{2}\Pi_{n}$	3.26		16.0		70.6		
$\tilde{\mathbf{B}_2^-}$	${}^{2}\Pi_{u}$	5.17		21.5		76.3		
C,	${}^{1}\Sigma_{a}^{\ddot{+}}$	12.0	(12.2)	67.2	(79.8)	327		
$\tilde{C_2^a}$	$\gamma^3 \Pi_{u}$	12.3	(9.523)	67.4	(59.4)	322	(301)	
C,	$\tilde{3}\Sigma_{a}^{-1}$	14.7	. ,	78.9	()	378	. ,	
C,	${}^{1}\Delta_{a}^{g}$	14.6		78.5		367		
C,	${}^{1}\Sigma_{a}^{g}$	14.6		78.3		371		
$\tilde{C_2}$	${}^{1}\Sigma^{+}$	16.3		88.3		411		
C_2^+	${}^{2}\Pi_{}^{g}$	11.4		64.7		324		
C_2^+	${}^{2}\Pi^{u}$	9.57		57.2		305		
$\overline{C_2}$	$2 \Pi^{2}$	18.2		92.5		408		
\tilde{C}_{2}^{2}	$^{2}\Pi$	29.4		153		694		
\tilde{C}_{2}^{2}	${}^{2}\Sigma^{+}$	22.7		120		549		
\tilde{C}_{2}^{2}	${}^{2}\Sigma^{+}_{}$	24.3		128		573		
N ₂	$\frac{1}{\Sigma}$	37.4	(23.0)	245	(178)	1416	(1195)	
- 2	- g	30.9	()	200	(2.0)	1136	()	
N_{2}^{+}	${}^{2}\Sigma^{+}$	20.3	(20.1)	145	(160)	900		
N_{1}^{+}	${}^{2}\Pi^{g}$	19.9	()	139	()	838		
N_{2}^{+}	${}^{2}\Pi$	27.4		193		1182		
N_2^{+}	${}^{2}\Sigma_{}^{H}$	29.3	(24.2)	206	(190)	1264		
N_{2}^{++}	$3\Sigma_{a}^{\mu}$	29.3	()	216	()	1405		
0,	${}^{3}\Sigma_{-}^{g}$	14.5	(11.8)	101	(87.3)	626	(544)	
2	g	16.9	~ ,	114	()	680	()	
0,	¹ 4.	13.7	(10.7)	96.4	(82.5)	586		
0,	${}^{1}\Sigma_{a}^{g}$	12.8	(9.67)	89.8	(75.9)	562		
O_2^+	${}^{2}\Pi_{a}$	18.6	(16.6)	144	(143)	983	(1004)	
O_{1}^{2}	${}^{2}\Pi_{-}^{y}$	13.1		83.2	()	461	()	
O_{1}^{++}	${}^{1}\Sigma_{-}^{\frac{9}{+}}$	9.33		70.7		481		
F.	${}^{1}\Sigma_{2}^{g}$	2.36	(4.73)	18.0	(38.4)	124	(230)	
- 2	y	4.86	(32.9	(0017)	199	(200)	
F,	${}^{1}\Sigma^{+}_{a}$	2.82		20.2		120		
F,	${}^{1}\Sigma_{a}^{g}$	4.45		32.7		207		
$F_2^{\hat{+}}$	${}^{2}\Pi_{a}^{"}$	3.48		26.0		170		
F_2^{+}	² Π.	3.44		25.9		177		
$\mathbf{F}_{2}^{\tilde{+}}$	$2\Sigma_{a}^{\mu}$	2,15		16.5		122		
$F_2^{\hat{+}}$	${}^{2}\Sigma_{u}^{\frac{g}{2}}$	3.31		24.5		169		
$F_2^{\tilde{+}}$ +	${}^{3}\Sigma_{g}^{-}$	2.61		20.2		140		

Table 4. Force constants from electron densities: first row homonuclear molecules^a

^a Footnote a, Table 2.

^b Experimental values for H₂ from data in Hertzberg, G.: Spectra of diatomic molecules. Princeton: D. Van Nostrand Company, Inc. 1950.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Molecule		$k_e \times 1$	05		$-l_e \times 1$	$-l_e \times 10^{13}$			$m_e \times 10^{21}$		
LiF $\chi^1 \Sigma^+$ 0.93 (2.48) 6.04 (12.4) 34.8 (55.1 LiF $^3 \Sigma^-$ 0.72 4.51 22.6 10.8 30.8 21.9 LiF $^4 J^2$ 0.70 4.43 22.5 LiF $^4 J^2 \Sigma^+$ 0.35 2.34 14.1 BeF $\chi^2 \Sigma^+$ 3.00 20.6 (5.77) 20.5 75.1 (3.0) 121 239 (164) $^2 Z^2 \Sigma^+$ 3.00 20.6 (5.77) 20.5 75.1 (3.0) 121 239 (164) $^2 Z^2 \Sigma^+$ 3.00 20.6 (5.77) 20.5 75.1 (3.0) 121 239 (164) BeF $^4 J^1 I_1$ 2.52 23.2 (4.95) 15.4 82.5 (27.3) 92.7 255 BeF $^{12} H^2 I_7$ 2.60 15.1 13.7 63.8 86.5 228 BeF $^4 \chi^2 \Sigma^+$ 2.06 15.1 13.7 63.8 86.5 228 BeF $^4 \chi^2 \Sigma^+$ 2.06 15.1 13.7 63.8 86.5 228 BeF $^4 \chi^2 \Sigma^+$ 5.69 38.0 (8.07) 41.0 150 (51.6) 262 2029 (231.6 $^5 598 23.5$ 42.1 111 265 456 BF $^4 \chi^2 \Sigma^+$ 4.75 20.3 35.1 107 231 498 BF $^+ \chi^2 \Sigma^+$ 4.75 20.3 35.1 107 231 498 BF $^+ M^2 I_1$ 2.31 16.8 16.2 82.6 102 358 BF $^+ H^2 I_1$ 4.23 11.18 16.2 82.6 102 358 BF $^+ H^2 I_1$ 4.23 11.18 16.2 82.6 102 358 BF $^+ M^2 I_1$ 4.23 13.0 37.2 72.9 2.21 CF $\chi^2 I_1$ 5.79 26.2 (7.42) 42.1 146 (53.7) 273 71.2 (362) $^6 69 C1.7$ 48.9 120 37 758 CF $^+ \chi^2 \Sigma^+$ 4.64 12.3 33.7 77.7 121 9432 NF $a^1 A$ 4.86 12.7 35.5 80.5 231 448 NF $b^1 \Sigma^+$ 5.06 13.0 37.2 82.9 242 464 NF $\chi^2 \Sigma^-$ 0.948 5.15 25.0 LiO $^A \Sigma^-$ 5.08 13.0 37.2 82.9 171 166 LiO $^A \Sigma^-$ 5.04 13.5 (7.51) 39.0 0.40 (46.2) 213 0.48 (233) $^A \Sigma^+$ 5.06 13.3 3.37 16.6 LiO $^A \Sigma^+$ 5.06 13 3.37 16.6 LiO $^A \Sigma^+$ 5.06 13 3.37 16.6 LiO $^A \Sigma^+$ 5.06 13 3.37 16.6 E0 $^A \Sigma^-$ 5.42 24.6 33.6 87.8 191 273 BeO $^A \Sigma^-$ 5.09 14.4 329 49.2 (107 189 42) BeO $^A \Sigma^-$ 5.09 14.4 12.9 2.9 (110 189 73) BeO $^A \Sigma^+$ 10.61 7.51) 39.0 0.40 (46.2) 213 0.48 (233) $^A \Sigma^+$ 10.61 7.51) 39.0 0.40 (46.2) 213 0.48 (233) $^A \Sigma^+$ 10.6 0.748 7.7 122 (41.4) 115 486 BO $^A Z^+$ 1.12 5.6 6.79 13.8 18 272 BeO $^A Z^+ \Sigma^+$ 1.12 7.7 (13.6) 87.2 135 (89.7) 51.4 511 BeO $^A Z^+ \Sigma^+$ 1.12 (41.1) 29.6 55.5 187 411 BO $^A M^2 \Sigma^+$ 1.12 (41.1) 29.6 55.5 187 411 BO $^A M^2 \Sigma^+$ 1.12 (41.4) 115 486 BO $^A Z^+ \Sigma^+$ 1.13 2.77 (13.6) 87.2 135 (89.7) 51.4 51 BO $^A Z^+ \Sigma^+$ 1.14 8.0 842 110 510 576 CO $^A Z^+ \Sigma^+$ 2.11 47.8 (19.0) 14			$\overline{Z_L}$	Z _H	Exptl.	$\overline{Z_L}$	Z _H	Exptl.	Z_L	Z _H	Exptl.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LiF	$\gamma^1 \Sigma^+$	0.93		(2.48)	6.04		(12.4)	34.8		(55.1)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		~	0.800	4.47		5.24	10.8		30.8	21.9		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LiF	${}^{3}\Sigma^{-}$	0.72			4.51			25.6			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LiF	a¹∆	0.70			4.43			25.2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LiF ⁺	$\chi^2 \Pi_i$	0.14			2.47			19.2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LiF^+	$A^2\Sigma^+$	0.35			2.34			14.1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BeF	$\chi^2 \Sigma^+$	3.00	20.6	(5.77)	20.5	75.1	(33.0)	121	239	(164)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2.84	14.8		19.5	55.5		119	175		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BeF	$A^2 \Pi_i$	2.32	23.2	(4.95)	15.4	82.5	(27.3)	92.7	255		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BeF	$H^2 \Pi$.	2,54	0.003	; `´´	17.3	0.02		104	0.4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BeF ⁺	$\gamma^1 \Sigma^+$	2.62	0.01		18.2	0.1		113	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BeF ⁺	$A^{3}\Sigma^{-}$	2.06	15.1		13.7	63.8		86.5	228		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BeF ⁺	a¹⊿	2.03	15.0		13.5	63.5		85.4	227		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BeF ⁻	${}^{1}\Sigma^{+}$	3.38	32.5		22.6	100		135	270		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BF	$\gamma^{1}\Sigma^{+}$	5.69	38.0	(8.07)	41.0	150	(51.6)	262	2029	(231.6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		λ –	5.98	23.5	```	42.1	111		265	456		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BF ⁺	$\gamma^2 \Sigma^+$	4.75	20.3		35.1	107		231	498		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BF ⁺	$A^2 \Pi$	2.31	16.8		16.2	82.6		. 102	358		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BF ⁺	$H^2 \Pi$	4.72	0.110)	34.8	0.572		229	2.21		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CF	$\gamma^2 \pi$	5.79	26.2	(7.42)	42.1	146	(53.7)	273	712	(362)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UI	λ 11γ	6.96	21.7	(///=/	48.9	120	()	307	578	` '	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CF^+	$\chi^1 \Sigma^+$	5 76	26.2		44.0	160		299	862		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NF	$\sqrt{3\Sigma^{-}}$	4 64	12.3		33.7	77.7		219	432		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NF	$a^1 A$	4 86	12.7		35.5	80.5		231	448		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NF	$b^1\Sigma^+$	5.08	13.0		37.2	82.9		242	464		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NF ⁺	$\sqrt{2} \Pi$	3 44	10.3		25.9	67.4		174	394		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NF ⁻	$\chi^2 \Pi$	5 90	13.5		41.9	83.6		264	449		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LIO	$\chi^2 \Pi_i$	1 25	10.0		6.79	00.0		33.8			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LIO	$A^2 \Sigma^+$	0.61	3		3.37			16.6			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\sqrt{3}\Sigma^{-}$	0.01	8		515			25.0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$A^{1}\Sigma^{+}$	0.05	14		0.398	2		2.7	2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BeO	$\sqrt{1}\Sigma^+$	6.40	015	(7.51)	39.0	0.40	(46.2)	213	0.48	(233)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	bco	λ 2	4 54	14.1	(7.51)	29.6	52.9	(101-)	171	166	()	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BaO	$\sqrt{3}\Sigma^{-}$	5 42	24.6		33.6	87.8		191	273		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BeO	$a^1 A$	3.51	24.0		33.1	873		188	272		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BeO ⁺	$\sqrt{2} \Pi$	5 32	0.004	1	33.4	0.071		189	1.2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BeO ⁺	$A^2 \Sigma^+$	2 77	0.00	7	18.1	0.067	r	107	0.66		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BeO ⁻	2 П	50.9	14.4	,	329	49.2		1905	150		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BO	$\gamma^2 \Sigma^+$	131	277	(13.6)	87.2	135	(89.7)	514	571	(481)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ЪС	12	10.7	25.2	(15.0)	72.1	121	(0,1,1)	431	499	(-)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BO	Δ ² Π	5.87	26.7	(6.11)	24.7	122	(41.4)	115	486		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BO	$H^2 \Pi$	12.6	1.57	(0.11)	83.4	6 99	()	489	25.1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BO+	$\frac{11}{\sqrt{15^+}}$	10.6	0.74	8	72.9	3.87		446	15.9		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BO+	λ 2 35-	4 80	19.7	0	32.1	96.0		189	414		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BO+	$a^1 A$	4.02	19.7		31.7	95.5		187	411		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BO-	μ 21 1 _Σ +	15.2	50.0		98.4	217		563	812		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00	$\sqrt{1} \Sigma^+$	20.1	47 R	(19.0)	140	277	(136)	867	1402	(796)	
CO $a^3 \Pi$ 12.4 18.0 84.2 110 510 576 CO ⁺ $\chi^2 \Sigma^+$ 17.7 24.1 129 156 839 890 CO ⁺ $A^2 \Pi$ 8.95 23.3 61.9 140 384 795	0	λ 4	10.1	33.8	(17.0)	131	193	(100)	801	956	(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CO	$a^3 \Pi$	17.0	18.0		84 2	110		510	576		
CO^+ $A^2\Pi_1$ 8.95 23.3 61.9 140 384 795	CO+	$\sqrt{2}\Sigma^+$	177	24.1		129	156		839	890		
	CO^+	λ Δ Δ ² Π	£ 05	233		61 9	140		384	795		
CO^+ $H^2\Pi$ 15.8 3.08 115 19.2 744 106	CO^+	$H^2 \Pi$	15.8	3.08		115	19.2		744	106		

Table 5. Force constants from electron densities: first row heteronuclear molecules^a

Molecu	le	$k_e \times 10$)5		$-l_e \times 1$	013		$m_e \times 10^{21}$		
		$\overline{Z_L}$	Z _H	Exptl.	Z_L	Z_{H}	Exptl.	Z_L	Z _H	Exptl.
CO ⁺⁺	${}^{1}\Sigma^{+}$	12.1	1.66		92.5	11.5		627	7.12	
NO	χ ² Π,	18.6	28.8	(15.9)	131	190	(124)	816	1098	(775)
		19.7	27.1		135	173		821	967	
NO^+	$\chi^{1}\Sigma^{+}$	25.0	38.6		191	275		1301	1723	
NO ⁻	${}^{3}\Sigma^{-}$	22.4	33.7		151	213		898	1166	
LiN	$^{3}\Sigma^{-}$	1.05			5.74			27.3	}	
BeN	$^{2}\Pi_{i}$	1.16			6.58			32.7	7	
BeN	$2\Sigma^{+}$	0.257	7		1.60			8.7	79	
BN^a	χ ³ Π	9.27	17.4	(8.41)	57.3	82.2	(63.9)	311	336	(500)
BN	$^{3}\Sigma^{-}$	13.3	30.8		81.8	141		443	562	
BN	$a^1 \Delta$	13.2	30.5		79.7	140		425	550	
BN^+	$\chi^2 \Pi_i$	10.0	1.85		62.9	9.76		347	43.7	
BN^+	$2\Sigma^{+}$	5.94	0.167	7	38.7	0.98	6	222	4.65	
BN^{-}	${}^{2}\Pi_{i}$	16.1	36.2		93.8	156		476	576	
CN ^a	$\chi^2 \Sigma^+$	18.4	24.9	(16.3)	117	141	(111)	652	692	(601)
CN		15.4	11.2		97.8	62.9		542	310	
CN^+	$A^{3}\Sigma^{-}$	7.89	13.0		48.8	75.1		267	384	
CN^+	$a^{1}\Sigma^{+}$	14.0	8.20		93.4	43.9		547	190	

Table 5 (continued)

^a Footnote a, Table 2.

Table 6. Representative force constants calculated for periods 1-2 and 2-2 diatomic molecules using Clementi atomic densities^{a, b}

Molecule	$k_e \times 10$	$k_e \times 10^5$			$-l_e \times 10^{13}$			$m_e \times 10^{21}$		
	$\overline{Z_L}$	$\overline{Z_{H}}$	Exptl.	$\overline{Z_L}$	Z_H	Exptl.	$\overline{Z_L}$	Z_{H}	Exptl.	
PO	22.6	7.98	(9.44)	106	49.0	(57.6)	425	267	(277)	
PN	17.1	10.6	(10.5)	79.7	62.7	(61.5)	320	327	(295)	
SO	6.83	18.0	(7.93)	41.5	91.1	(49.2)	223	402	(265)	
SiO	18.0	5.55	(9.24)	74.2	33.6	(54.9)	261	181	(278)	
ClO	13.0	5.82	(4.89)	69.9	35.0	(32.7)	331	187	(172)	
P ₂	9.50	9.50	(5.56)	42.1	42.1	(27.2)	163	163	(106)	
SiS	6.29	10.8	(4.94)	2.97	4.25	(23.2)	123	146	(91.3)	
Cl_2	4.32	4.32	(3.29)	21.8	21.8	(18.3)	96.6	96.6	(61.2)	
AlCl	1.87	6.94	(2.08)	9.36	23.6	(10.8)	41.0	69.7	(66)	
Si ₂	3.70	3.70	(2.12)	14.0	14.0	(8.55)	45.8	45.8	(29.5)	
NaCl	0.637	2.83	(1.10)	3.15	6.66	(4.29)	13.8	13.1	(13.0)	
Na ₂	0.547	0.547	(0.172)	1.30	1.30	(0.315)	2.66	2.66	(0.276)	

^a Eqs. (15) to (17) of text.

^b Columns labeled Z_L employ the charge of the light nucleus, those labeled Z_H the heavy nucleus. Experimental values from footnote c, Table 1; cgs units.

4. Anharmonic Force Constants from Electron Densities

Formulas for the anharmonic equilibrium force constant l_e and for the quartic equilibrium force constant m_e for diatomic molecules are got by taking derivatives of Eq. (14):

$$l_e = 4\pi \mathscr{Z}_{\alpha} (\mathrm{d}\varrho_{\beta}/\mathrm{d}R_{\alpha})_e - 2k_e/R_e; \qquad (16)$$

$$m_{e} = 4\pi \mathscr{Z}_{a} (d^{2} \varrho_{\beta} / dR_{a}^{2})_{e} - 2l_{e} / R_{e} + 4k_{e} / R_{e}^{2}.$$
(17)

Molecule	$k_e \times 10$	5	$-l_e \times 1$	013	$m_e \times 10^{21}$		
	Calc.	Exptl. ^a	Calc.	Exptl. ^a	Calc.	Exptl. ^a	
Si ₂	3.70	(2.12)	14.0	(8.55)	45.8	(29.5)	
Si ⁺²	2.31	(2.12)	9.12	(8.55)	31.5	(29.5)	
P_2	9.50	(5.56)	42.1	(27.2)	163	(106)	
P_{2}^{+2}	7.07	(5.56)	31.9	(27.2)	126	(106)	
P ₂ ⁺⁴	4.64	(5.56)	21.7	(27.2)	89.2	(106)	

Table 7. Examples of the effects of modifying the number of valence electrons in second row Clementi atomic charge densities on equilibrium force constants determined using Eqs. (15) to (17) of text; cgs units

^a Table 1, footnote c.

Predictions of l_e and of m_e using Eqs. (16), (17) are given in Tables 2–6, and they follow the same trends as for k_e . Predictions using second row Clementi atomic densities tend to be too large, as seen in Table 6. However, removing the contributions of one or two valence electrons can largely correct for this, as seen in Table 7. This suggests modifying the atomic valence population to fit the experimental k_e exactly in Eq. (14), and then calculating accurate higher order force constants with the modified density [14].

References

- 1. Salem, L.: J. chem. Physics 38, 1227 (1963).
- 2. Ross, W.R., Phillipson, P.: J. chem. Physics 44, 844 (1966).
- 3. Bishop, D. M., Macias, A.: J. chem. Physics 51, 4997 (1969).
- Kim, H.: J. chem. Physics 48, 301 (1968).
 Schwendeman, R.H.: J. chem. Physics 44, 556 (1966).
- 5. Krauss, M.: Compendium of *ab initio* calculations of molecular energies and properties, Nat. Bur. Std. Technical Note **438** (1967).
- 6. Platt, J. R.: J. chem. Physics 18, 932 (1950).
- 7. Bratoź, S., Daudel, R., Roux, M., Allovena, M.: Rev. mod. Physics 32, 412 (1960).
- 8. Empedocles, P.: J. chem. Physics 46 4475 (1967).
- Borkman, R. F., Simons, G., Parr, R. G.: J. chem. Physics 50, 58 (1969).
- 9. Anderson, A. B., Handy, N. C., Parr, R. G.: J. chem. Physics 50, 3634 (1969).
- 10. Parr, R.G.: J. chem. Physics 53, 3375 (1970).
- 11. Clementi, E.: Tables of atomic functions, a supplement to the paper Ab initio computations in atoms and molecules. IBM Journal of Research and Development 9, 2 (1965).
- 12. Bader, R. F. W., Cade, P. E.: Private communication of densities to be published in a monograph of molecular change distributions by the University of Chicago Press.
- Hennecker, W. H., Keaveny, I.: J. chem. Physics 46, 3341 (1967); 47, 3381 (1967); 50, 5313 (1969).
- Empirical relationships (Anderson, A. B., Parr, R. G.: Chem. Physics Letters 10, 293 (1971)) suggest using model densities of exponential form in Eq. (14) (Anderson, A. B., Parr, R. G.: J. chem. Physics 55, 5490 (1971); 56, 5204 (1972)).

Dr. A. B. Anderson Chemistry Department, Indiana University Bloomington, Indiana 47401, USA